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Two-dimensional finite-amplitude Kelvin-Helmholtz waves are tested for stability 
against three-dimensional infinitesimal perturbations. Since the nonlinear waves are 
time-dependent, the stability analysis is based upon the assumption that they evolve 
on a timescale which is long compared with that of any instability which they might 
support. The stability problem is thereby reduced to standard eigenvalue form, and 
solutions that do not satisfy the timescale constraint are rejected. If the Reynolds 
number of the initial parallel flow is sufficiently high the two-dimensional wave is 
found to be unstable and the fastest-growing modes are three-dimensional disturb- 
ances that possess longitudinal symmetry. These modes are convective in nature and 
focused in the statically unstable regions that form during the overturning of the 
stratified fluid in the core of the nonlinear vortex. The nature of the instability in 
the high-Reynolds-number regime suggests that it is intimately related to the 
observed onset of turbulence in these waves. The transition Reynolds number above 
which the secondary instability exists depends strongly on the initial conditions from 
which the primary wave evolves. 

1. Introduction 
In  Klaassen & Peltier (1985a, hereinafter referred to as KP), we described a 

sequence of numerical simulations of two-dimensional finite-amplitude Kelvin- 
Helmholtz (KH) waves. By using a higher level of resolution than was employed in 
previous numerical studies of these waves, we were able to trace the evolution of KH 
billows from initial states with Reynolds numbers as high as Re = 900, and were able 
to follow the flow histories from the regime of strong linear wave growth, through 
the subsequent nonlinear saturation of the wave amplitude, and into a regime in 
which the wave dynamics were dominated by diffusive decay. Although both 
observational and experimental evidence suggests that KH waves commonly break 
down into turbulence at some point in their evolution, no instabilities leading to the 
onset of chaotic motions were observed during the course of these two-dimensional 
numerical simulations. Since the simulations were continued to a point where the KH 
billows began to decay under the influence of diffusive processes, it seems certain that 
we have traced the evolution of these waves considerably beyond the time at which 
secondary instabilities should be initiated. 

Whether or not the onset of turbulence will disrupt the evolution of a particular 
KH wave is in part determined by the values of the non-dimensional parameters 
associated with the initial parallel flow, namely the Reynolds number Re and the 
minimum Richardson number Rimin. The value'of the Prandtl number Pr, which 
is a property of the fluid itself, will also play a role in determining the onset of chaos 
in these flows. If the critical Reynolds number governing the transition is low enough, 
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the onset of secondary instabilities may also depend on the characteristics of the 
disturbance that induces the growth of the primary KH wave. As pointed out in KP, 
this sensitivity to initial conditions is caused by the strong diffusion of the mean flow 
at low values of the Reynolds number. 

Woods (1969) has made an.explicit attempt to determine a value for the critical 
Reynolds number Re, below which the onset of turbulence does not occur. He quotes 
a value of about 300 for a critical Reynolds number based on a lengthscale D given 
by the vertical amplitude of the billow and a velocity scale given by the ‘overturning’ 
speed. These are unfortunate choices because the amplitude of the KH wave is a 
function of the Reynolds number and the overturning speed is ill-defined. From the 
information we have, we may estimate D - 4h and V - so, where h is half the shear 
depth and uo is half the velocity difference across the shear layer. This gives a value 
of Re, - 100 for the choice of scales we employ (Re = uo h/v). We should note that 
this observation is for Pr - 10 and that Woods (1969) failed to provide any infor- 
mation concerning the value of Rim,, for the KH waves he observed. Furthermore, 
this value of the critical Reynolds number lies in the region where the finite-amplitude 
characteristics of KH waves are extremely sensitive to the amplitude and structure 
of the disturbance that initiates wave growth (see KP). 

Although neither Thorpe (1973) nor Koop & Browand (1979) have explicitly 
determined values for Re,, their experiments have shown that the turbulent collapse 
of KH waves can occur for flows with Re =560, Rim,,=0.081 and R e =  75, 
Ri,,, = 0.075 respectively. (Note that the values of all parameters have been 
converted to our choice of length- and velocity scales). In both cases the Richardson 
numbers are close to the value Ri,,, = 0.07 employed in our numerical simulations, 
while the Reynolds numbers are considerably lower than the maximum value 
Re = 900 that we have employed. However, these experiments pertain to a saline 
solution for which the Prandtl number Pr - 700, while our numerical simulations 
were performed with Pr = 1, a value representative of air. We therefore cannot 
entirely discount the possibility that finite-amplitude KH waves may be absolutely 
stable in the limited parameter range considered in KP. 

However, there is another possibility, which presents a more attractive explanation 
for the failure of the numerical simulations described in KP  to reveal the onset of 
turbulence. It is well known that fully developed turbulence involves chaotic motions 
in all three spatial dimensions. Furthermore, Thorpe (1973), Brown and Roshko 
(1974) and Koop & Browand (1979) have all reported that the onset of chaotic 
motions follows the introduction of fully three-dimensional motions into the shear 
layer. Since the numerical model we employed in our simulations of nonlinear KH 
waves (KP) was restricted to two spatial dimensions, it  was not capable of represent- 
ing any secondary instabilities leading to an intrinsically three-dimensional flow. This 
explanation for the failure of two-dimensional numerical models to reproduce the 
observed turbulent breakdown of KH waves, which was first proposed by Peltier, 
Hall6 & Clark (1978), will be considered in more detail in what follows. 

The experiments mentioned above have established that the collapse of KH billows 
involves a transition from a two-dimensional to a three-dimensional flow. In addition, 
Thorpe (1973) and Brown & Roshko (1974) have shown that the irregular small-scale 
motions associated with the onset of turbulence first appeared in the core of the KH 
wave. However, no attempt was made in these experiments to determine the physical 
origin of the secondary instabilities responsible for the turbulent breakdown of the 
nonlinear waves. Several mechanisms for this transition have been proposed in the 
literature. For example, Maslowe (1973) has suggested that small-scale secondary 
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Kelvin-Helmholtz disturbances may develop on the braids between adjacent vortex 
centres. Although such instabilities may occur, it is difficult to see how they could 
introduce three-dimensional motions into the shear layer. Furthermore, the ob- 
servations clearly indicate that turbulence first appears in the core of the billow, 
forcing us to conclude that secondary instabilities of the braids are not likely to be 
involved in the onset of chaotic motions. Scorer (1969) proposed that a centrifugal 
instability could disrupt the circulating fluid in the core. Such an instability, which 
could introduce intrinsically three-dimensional motions into the core of the billow, 
would be consistent with the observations. Davis & Peltier (1979) have argued that 
the overturning fluid in the core could be disrupted by buoyancy forces, a process 
that would also produce secondary motions consistent with the observations. 

In the present paper we test the two-dimensional nonlinear KH wave states of K P  
for stability against fully three-dimensional infinitesimal perturbations. This analysis 
is sufficient to determine which of these three mechanisms is responsible for the onset 
of turbulence in these flows. As in KP, we restrict our attention to Kelvin-Helmholtz 
waves with Rim,, = 0.07 and Pr = 1. The effect of Prandtl number on the stability 
of nonlinear KH waves has been investigated in Klaassen & Peltier (1985b). The effect 
of the initial minimum Richardson number will be considered elsewhere. 

We begin with a simple physical analysis concerning the possibility of gravitational 
instability ($2). The theoretical apparatus required to describe the evolution of 
general three-dimensional infinitesimal disturbances superimposed on the nonlinear 
two-dimensional KH wave is developed in $3. The rigorous calculation of the 
evolution of such disturbances is complicated by the fact that the nonlinear KH wave 
does not achieve a steady state at maximum amplitude, but rather begins a periodic 
exchange of energy with the mean flow. By restricting the analysis to those 
disturbances which grow quickly compared to the temporal variations in the 
background KH wave, we are able to reduce the problem to standard eigenvalue form. 
In $4 we outline the numerical technique used to  solve these approximate equations. 
This is followed in $5 by an analysis of the stability of the KH wave with Re = 500. 
Since a preliminary search of wavenumber space has shown that the most unstable 
modes have their wave vector oriented parallel to the long axis of the KH wave, we 
restrict the presentation of our results to the case of longitudinal symmetry. Unstable 
modes with other wave-vector orientations will be discussed in future publications. 
In $6 we investigate the effect of the initial Reynolds number on the stability of KH 
waves and draw some conclusions concerning the critical Reynolds number for the 
onset of the instability. Our results are summarized in $7.  

2. On the possibility of a buoyancy-induced instability 
If simple parcel methods were applied to the stability analysis of nonlinear 

Kelvin-Helmholtz wave states, we should expect a gravitational instability to be 
realized in the regions of superadiabatic temperature gradient that form as the fluid 
in the core of the KH wave overturns. However, such crude arguments consider 
neither the diffusive properties of the fluid, nor the dynamics of the flow. Davis & 
Peltier (1979) pursued the question of a buoyancy-induced instability further by 
considering the superadiabatic regions that form in the core of the wave as thin, 
locally horizontal layers heated from below. In  analogy with the Rayleigh-B6nard 
problem in the presence of a sheared mean flow (e.g. Kelly 1977), they proposed that 
unstable convective disturbances should take the form of rolls that are aligned in the 
direction of the shear. As Davis & Peltier pointed out, this preferred alignment for 
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unstable convective rolls would introduce an explicit dependence on the third spatial 
dimension into the Kelvin-Helmholtz flow. 

Davis & Peltier tested this possibility by calculating a Rayleigh number repre- 
sentative of the superadiabatic regions at the time of maximum KH wave amplitude. 
It was found that this Rayleigh number increases dramatically between Re = 400 and 
Re = 500. The Rayleigh number corresponding to Re = 450 was found to be about 
lo3, which is the same order of magnitude as the critical Rayleigh number for the 
Rayleigh-BBnard problem. Thus if the Reynolds number of the flow is sufficiently 
high, one would expect a buoyancy-driven three-dimensional instability to develop 
in the superadiabatic regions of the two-dimensional KH wave. However, since we 
are dealing with superadiabatic regions that are embedded in a sheared non-parallel 
flow, the analogy with the BBnard problem is not strictly valid. In order to establish 
rigorously the stability of a finite-amplitude Kelvin-Helmholtz wave one must 
perform a more sophisticated stability analysis. 

Before proceeding to a more rigorous analysis, we shall find it instructive to 
examine the superadiabatic regions of the flow and their corresponding Rayleigh 
numbers in some detail. At  time t we may define a local Rayleigh number associated 
with a fixed horizontal position x within a particular superadiabatic region by 

g A8 S3 R u ( x , ~ )  = - 
q K V  ’ 

where AB(x, t )  is the local change in potential temperature across the superadiabatic 
layer and 6(x, t )  is the local depth of the layer (i.e. the vertical distance between points 
at which d8/dz vanishes). This Rayleigh number may be expressed as a function of 
the primary non-dimensional parameters of the problem, namely the initial Reynolds 
number 

Re = -, (2.2) 
uo h 

V 

the Prandtl number 

and the initial bulk Richardson number 

Pr = V / K  

. gh AT Ra = - qu: ) 

such that 

Here h represents the half depth of the shear layer, while uo and AT respectively 
represent half the velocity and temperature differences across the layer. The cubic 
dependence on S indicates that the Rayleigh number is very sensitive to the depth 
of the superadiabatic region. Also note that, in general, the factors A8 and 6 will be 
functions of Re, Pr and Ri as well as x and t .  

Figure 1 illustrates the evolution of the potential-temperature field for the KH 
wave with Re = 500. The numerals labelling each plot refer to certain key times in 
the energy cycle of the wave, e.g. times at which the wave’s Reynolds stress either 
vanishes or achieves an extreme value. Details are given in the caption, and further 
discussion may be found in KP. The shading in figure 1 indicates those regions in 
which the temperature gradient exceeds that for the adiabatic case. These super- 
adiabatic regions are produced by overturning fingers of hot and cold fluid in the core 
of the KH billow. A small patch of statically unstable fluid first appears in the centre 



Turbulence onset in Kelvin-Helmholtz billows 5 

I 
FIQIJRE 1. The development of statically unstable regions in the two-dimensional nonlinear KH 
wave with Re = 500. The regions where dO*/dz < 0 (shaded areas) have been superimposed on 
sketches of the potential-temperature field at various key times in the wave’s energy cycle, which 
are indicated in the lower-right corner of each frame: (3) maximum Rsynolds stress, (4) maximum 
wave kinetic energy, (5) zero Reynolds stress, (6) minimum Reynolds stress, (7) zero Reynolds stress. 
Further details may be found in Klaassen & Peltier (1985a). 

of the core at the key time (2*) (t = 531.65 8) .  This superadiabatic region (SAR) grows 
in size as the billow evolves, and after one complete revolution of the fingers it is 
transformed into a ring-shaped region (figure 1 (3)). This superadiabatic ring becomes 
narrower as i t  expands outward, and the next complete revolution of the fingers 
introduces another small patch of statically unstable fluid at the centre (figure l (4)) .  
The process is repeated, and the core is gradually filled with successive rings of 
superadiabatic fluid. We shall find i t  convenient to refer to the first superadiabatic 
region to emerge as the primary SAR, the second as the secondary SAR, and so on. 

It turns out that most of the spatial and temporal variations in Ra are due to 
variations in the depth 6, while the potential-temperature difference A0 is relatively 
constant in both space and time. We have chosen the value of the Rayleigh number 
Ra* at the centre of the domain (x = 4L) and at the time of maximum wave amplitude 
(key time (4)) w a representative measure of the degree of stability. This choice 
provides the closest correspondence to the horizontal layer of the BQnard problem. 
Generally, both primary and secondary SARs exist at the key time (4). Since the value 
of Ra* is considerably larger for the primary SAR, this region is the most likely site 
for the onset of secondary instabilities. We have calculated Ra* for the primary SARs 
of various KH waves with initial Reynolds numbers in the range 300 < Re < 900, 
and plotted it in figure 2 as a function of Re. If we assume that the critical Rayleigh 
number is of the order of lo3, as it is in the BQnard problem, we would expect KH 
waves with initial Reynolds numbers greater than Re - 300 to be unstable to 
disturbances driven by buoyancy forces. However, in order to prove this conjecture, 
we must test the stability of these finite-amplitude waves against infinitesimal 
perturbations. 
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FIGURE 2. Common logarithm of Ra* = Ra(x = ?L) at the time of maximum amplitude (key time 
(4)) for KH waves with various initial Reynolds numbers (solid line). The dashed line represents 
the result obtained by Davis & Peltier (1979), based on local averaging in the waves' superadiabatic 
regions. 

3. A theory for the stability of Kelvin-Helmholtz waves 
In this section we outline the method that we have developed for analysing the 

stability of two-dimensional finite-amplitude Kelvin-Helmholtz waves against fully 
three-dimensional infinitesimal perturbations. Although the numerical model em- 
ployed in K P  for the simulation of these waves was anelastic, we employ the 
Boussinesq equations for the stability analysis. This is permissible because the 
isentropic scale height H ,  = c p  S/g of the fluid is large compared with the vertical 
extent 2h of the shear layer to which the KH flow is confined. Since the Boussinesq 
equations require the velocity field uB to be solenoidal (i.e. V * U ,  = 0), while the 
anelastic velocity field uA obeys the continuity relation V*cjJ(z) uA] = 0, it is 
necessary to convert the anelastic velocity field t o  its Boussinesq counterpart by 
appropriate weighting with the anelastic background density profile p ( z ) .  We there- 
fore employ the velocity field 

in the actual stability analysis. Here po is the constant Boussinesq density. 
In order to avoid the use of the pressure in the calculation of the temperature field, 

we have replaced the usual Boussinesq thermodynamic equation for the temperature 
deviation (e.g. Ogura & Phillips 1962) with an equation for the potential-temperature 
deviation. With this modification, the non-dimensional hydrodynamic equations in 
the Bossinesq approximation become 

1 (a, + uj a,) ui = - ar p* + ~i twr, +- Re vzUi 

atu, = 0, (3.4) 
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where the potential temperature deviation 

8 - 0  8* = - 
AT (3.5) 

has been non-dimensionalized with respect to AT (half the temperature difference) 
rather than 8 as in KP. We have chosen h (half the shear depth) and u,, (half the 
velocity difference) as representative scales of length and velocity respectively. The 
non-dimensional parameters Re, Pr and Ri appearing in (3.2)-(3.4) have been defined 
previously in (2.2)-(2.4). 

We linearize (3.2) and (3.3) by expanding the total Boussinesq velocity, potential- 
temperature deviation and pressure-deviation fields as 

P*@, y, z ,  t )  = 4(z,z, t )  +p‘(z, y, z, t )  (3.8) 

respectively. Here a$, 8 and 4 represent the known two-dimensional finite-amplitude 
Kelvin-Helmholtz fields obtained from the numerical simulations described in KP, 
while u;, 8’ and p‘ represent the unknown three-dimensional infinitesimal perturba- 
tims. The coordinate system has been chosen to be compatible with that of KP, 
so that the z-axis (i = 1) is in the streamwise direction, the z-axis (i = 3) is in the 
vertical direction, and the y-axis (i = 2) defines the spanwise direction. Dropping all 
terms of second order in the perturbations and subtracting the equations for the 
two-dimensional KH flow, we obtain 

1 
Re a, u; +a, a, u;+ a,a, u;+ (a, a,) u;+ (a, a,) u; = -a,p’+-v2uj, (3.9) 

1 
Re 

a, U; + a, a, u; + a, a, u; = - ay pi+-v2u;, (3.10) 

1 
Re 

a, u; + a, a, u; + a, a, u; + (a, a,) u, + (a, a,) u; = -a, p ’ + ~ i  8’ +- vzU;, (3.1 I) 

a, 8’+a, a, 8’ +‘i, a, 8’+ (a, 8) u;+ (a, 0) U; = - V28’, (3.12) 

a,uj+avu;+a,u; = 0. (3.13) 

The relation (3.13) for the continuity of mass may be replaced by a diagnostic 
equation for the pressure : 

Re Pr 

v2p‘ = ~i aZe’-2[(a,a,) a,u;+(a,a,) a,u;+(a,a,) a,u;+(a,a,) a,u;], (3.14) 

which is obtained by taking the divergence of the vector form of the momentum 
equations (3.9)-(3.11) and applying the solenoidal constraint (3.13). The boundary 
conditions at z = 0 and z = H are 

(3.15) 

The boundary condition on the pressure perturbation is obtained from the vertical 
momentum equation (3.11) by applying the boundary conditions on 8’ and u;. 
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The coefficients of the various terms in the linear homogeneous partial differential 
equations (3.9)-(3.14), which comprise the Kelvin-Helmholtz fields Ex, 12, and 8 and 
their derivatives, are independent of the y-coordinate and are periodic in x, with 
period L = %/a. Since the solutions must remain bounded in the horizontal, they 
are of’the form 

f’(x, y, z, t )  = Jx, z, t )  ei(bs+dg), (3.16) 

where f’ is one of {uk, u;, u:, el,p’}, and b and d are real. Here? has the same period 
as the KH fields, i.e. 

The x-dependence of (3.16) is dictated by an obvious parallel with the Floquet theory 
of ordinary differential equations (e.g. Jordan & Smith 1977). If the ratio b / a  is 
rational then the solutionsf’ of (3.9)-(3.14) are periodic in the streamwise direction, 
with a period that is an integral multiple of L. 

The substitution of (3.16) into (3.9)-(3.14) yields an initial-value problem, which 
may be rigorously solved by specifying the horizontal wavenumbers b and d and the 
initial disturbance fieldsj(x, z,  to) ,  and then integrating forward in time. However, this 
method has several disadvantages. Since the initial disturbances are arbitrary, it is 
not possible to ensure completeness, i.e. that all growing disturbances have been 
found. This problem may be reduced to a certain extent by initializing thej(z,  z, t o )  
with low-amplitude noise. However, one must then integrate the equations of motion 
for many time steps before the noise develops into a rapidly growing disturbance (see 
e.g. figure 14 of KP). If several competing modes existed and were simultaneously 
amplified, the results could be difficult to interpret. In the final analysis, this method 
would prove to be cumbersome and expensive. 

Fortunately, there is an alternative approach available. Observations by Thorpe 
(1973) indicate that the disturbances involved in the secondary instability grow to 
finite amplitude very quickly when compared with the evolution of the original 
two-dimensional Kelvin-Helmholtz billow. On the basis of these observations, we 
assume that the flow evolves on two widely separated timescales, the slower timescale 
being associated with the background Kelvin-Helmholtz flow and the faster timescale 
being associated with the growth of the secondary instability. Then we may simply 
ignore the time dependence of the coefficients in (3.9)-(3.14). Since we are interested 
in disturbances that are unbounded in time, the perturbation fields would then have 
the form 

f’(x, y, z ,  t )  =f+(x, z )  ei(*X+du)+d, (3.17) 

where f t (x+ L, z )  =ft(x,z), and the growth rate is the real part of the complex 
variable a. Substitution of (3.17) into (3.9)-(3.14) transforms this system into an 
eigenvalue problem. 

The validity of the assumption concerning the separation of timescales can be 
subjected to aposteriori justification. Only those disturbances with growth rates much 
larger than the dominant frequencies of the power spectrum of the KH wave will be 
accepted as legitimate solutions of the eigenproblem. Note that it is therefore 
impossible to use this technique to locate neutral curves, a limitation which need not 
concern us here since we are only interested in those modes that will be physically 
realized, i.e. the fastest-growing modes. Although this method treats the Kelvin- 
Helmholtz wave as though it were in a steady state, we may gain some insight into 
the effect that the temporal variations of the KH background have on the secondary 
instability by applying the method at various instants in the evolution of the 
nonlinear wave. 

f ( X + L ,  2, t )  =.h, 2, t ) .  
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Substituting perturbation fields of the form (3.17) into the linearized Boussinesq 
equations (3.9)-(3.14) yields the following set of stability equations : 

1 
Re 

uuL+c,(a,+ib) ~ ~ + ~ , i , , ~ ~ + ( a , c , )  ~L+(a,c,) U; = -(a,+%) p t+-~ ,uL,  

(3.18) 

(3.19) 

(3.21) 

(a,+ib) uL+idui+a,ui = 0, (3.22) 

~ , p t  = Ri az8t-2[(a,c,) (a,+ib) ~L+(a,c,) a , ~ i  
+ (a,.ii,) a,uL+ (a&) (a,+ib)ud], (3.23) 

where the differential operator 

L, = (a,+ib)2+a:-d2. (3.24) 

We observe that (3.18), (3.20), (3.21) and (3.23) are closed with respect to the 
variables ui ,  u;, 8 7  and pt. When d = 0 the y-momentum equation decouples 
completely from the remainder of the eigensystem, and the eigenfunctions, which in 
this case are all independent of the y-coordinate, separate into two distinct classes. 
The first class comprise solutions of the subsystem defmed by (3.18), (3.20), (3.21) 
and (3.23) (with d = 0), and have U; = 0. The second class comprise solutions of the 
subsystem consisting of the y-momentum equation (3.19) (with d = 0) and have 
u$ = ui = 8t = pt = 0. Since this latter class is not likely to be of any physical 
importance, it is ignored in the present study. When d 4= 0 the y-velocity eigenfunction 
ut remains coupled to the rest of the eigensystem through the presence of the pressure 
term in (3.19). In this case u t  is superfluous in the sense that it need not be included 
in any scheme for the solution of the eigensystem. 

The system of equations (3.18)-(3.23) possesses certain symmetries in the horizontal 
wavenumber space (b, d), which may be exploited to reduce the amount of computation 
required. The pertinent results may be summarized as follows. 

I. If u is an eigenvalue at (b, d) with eigenvector (uL, u;, u;, 8t,pt) then u 
is also an eigenvalue at (b, -d) with eigenvector (ul, -u;, ui, 8t,pt). (3.25) 

11. If u is an eigenvalue at (b, d) with eigenvector (ul, u;, ui, Bt,pt) then u* 
is an eigenvalue at ( -  b, d) with eigenvector (uL*, -u;*, u&*, @*,pi*). (3.26) 

The first of these properties is a consequence of the fact that the eigensystem is 
invariant under the transformation d + -d and uy+ -ui. The second may be 
established by putking b+ - b, uy+ -uf and taking the complex conjugate of each 
equation. These two results allow one to restrict the search for unstable modes to 
the quadrant where b,d 2 0. In  the case b = 0 the result (3.26) requires that the 
eigenvalues u = a,+io either be real or occur in complex-conjugate pairs. When 
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w =# 0 the modes corresponding to u and u* represent two waves travelling in opposite 
directions. Such modes, being simultaneously amplified, form stationary or standing 
waves. 

We may gain some insight into the physical source of the unstable modes by 
constructing an equation for the y-averaged kinetic-energy density of these three- 
dimensional disturbances : 

K"(z,z) = a(q'+q"+qv), (3.27) 

where the averaging operator is defined by 

(3.28) 

It is straightforward but tedious to show that for d + 0 this equation is of the form 

2a, K" + (a, a, + a, a,) K" 

= -$(a,a,) I~:1~-+(a,a,) I~bp'-$(a,a,+a,a,) Re {U:*U;} 

(3.29) 

where PRESS contains all the terms involving the pressure perturbation p t  and DISS 
represents the dissipative terms. The terms on the right-hand side of (3.29) represent 
possible local sources and sinks of K". The vertical heat flux correlations 

HFLX = 2 Ri Re cub* Ot} (3.30) 

represent, if positive, the extraction of potential energy from the background KH 
flow, while the terms containing the velocity correlations 

1 +$Ri Re { U ~ * @ ) + P R E S S + ~  DISS, 

STR = +*(a, a, - 8, a,) (I U; l2 - I u: 1 2 )  - +(a, a, + a, aZ) Re {u:* u;} (3.31 ) 

are responsible for the exchange of kinetic energy with the background KH flow. Note 
the presence of the KH velocity-deformation fields in (3.31). The disturbance fields 
appear in the form of a Reynolds-stress correlation -Re {u&* ui}, and also in the form 
I u; 12- I u$ 12. This latter quantity, if large and positive, indicates that there is little 
helicity (defined by u'V x u)  present in the convection rolls. The sources of energy 
for the secondary instabilities may be determined by examining contour plots of the 
quantities in (3.30) and (3.31), as long as the y-wavenumber d does not vanish. 

4. Numerical formulation of the stability problem 
Several methods are available for the solution of the eigensystem (3.18)-(3.23). For 

example, one could take advantage of the periodicity in x to expand the 
disturbance fields in a Fourier series ft(x, y) = X A  gA(Z) eiAax, where a = 2x/L. The 
resulting system of coupled ordinary differential equations in z could then be solved 
by a parallel shooting method (e.g. Keller 1976). However, the presence of the 
( l / R e )  (d2gA/dz2) terms would necessitate the use of the notoriously inefficient 
algorithms required for the solution of stiff ODE systems, making this scheme much 
less attractive. Pierrehumbert & Widnall (1982) have used a version of the 
pseudospectral collocation method outlined by Boyd (1978) to solve a similar (though 
less complicated) problem concerning the stability of the steady nonlinear disturbances 
discovered by Stuart (1967) for an inviscid unstratified shear layer with a hyperbolic 
tangent velocity profile. We have elected to employ a Galerkin method similar to that 
used by Busse (1972) and Clever & Busse (1974) to test the stability of finite-amplitude 
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convection rolls. Each perturbation field is expanded in terms of a complete set of 
orthogonal basis functions, thereby converting the differential eigensystem 
(3.18)-(3.23) to an algebraic eigenvalue problem. 

According to the boundary conditions (3.15), we may expand 

where 

m w  

et = c c c~,G~, ,  

V l l Z  
(4.6) F - eiAax COS-, a, FA, = 0, 

Av - H 

(4.7) 

If we make the substitutions (4.1)-(4.5) in the eigensystem (3.18)-(3.23), multiply 
each of the resulting equations by either F:p or G:p (whichever diagonalizes the term 
containing a) and integrate over 2 and z using the operator defined in (3.26), we obtain 
the following algebraic system of equations : 

V l l Z  
sin H ,  GAv Iz-0, H = 0. 

G - eiAax 
hv - 

(4.8) 

(4.9) 

uaKp = @ $ h V - x  A A V  'KA 'pV) J g A V  bhV-iBK 'Kp? 

A 
u r K p  = h A V - 2  '~A'pv) rAv-id8Kp, 

(4.10) 
A qb, = J ( 4 )  K ~ A V  a Av + ( J ( 5 )  K ~ A U  -2 R~ 6 KA 8 pv) bAv+Ri ' ~ p +  Dps~p3 

ucKp = J$b!%V ah + J$!b bAU + k $ A V -  'Kh 'pV) (4.11) 

(4.12) 

A s = JL;i,, a,,+ JFJ, bAv- Ri DpcKp, (4.13) 

(4.14) BA = ha+b, D, = -, A,, = Bi+D:+d2 
H 

where 

and summation is implied over repeated indices. The derivation of the interaction 
matrices JgA,,, which consist of integrals typically of the form (F:p ii,GAv), is 
straightforward but tedious. 

In  order to eliminate the pressure terms from their stability equations, Clever & 
Busse (1974) formulated their analysis in terms of poloidal and toroidal velocity 
potentials. This procedure, which raises the order of the differential system, is 
unnecessary since (4.13) may be trivially solved for the Galerkin pressure coefficient 
sKp. Note, however, that this cannot be done in the special case b = - ~ a ,  d = 0, 

iB, aKp + idrKp + Dp b, = 0, 

'CP K P  

Vll 
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,u = 0, because then A, = 0. Fortunately the indeterminate Galerkin pressure co- 
efficient corresponding t o  this special case does not appear in (4.8)-(4. lo), because 
B, = d = Dp = 0. Thus (4.13) may be used to eliminate sKp from (4.8)-(4.10), giving 

(4.15) 

(4.16) 

mKP = I!$\,, a,,,+ I$\,, b,,+ I$‘,,-- s s c,,,. (4.17) 

Once (4.15)-(4.17) have been solved for {aKp, b,,c,}, (4.12) may be used to obtain 

( Re Pr J’”) 

the y-velocity eigenfunction rKp : 

1 
---[~,a,-iD,b,1 (d * O ) ,  

‘Kp = { 
0 (d = 0) (two-dimensional case). 

When d + 0 the value of rKp so determined should satisfy 

(4.18) 

A 
urKp = I$\,, a,,,+ I$\,, b,,+ Ri (iz) 2 c ~p + ( Po) K ~ A V  -2 fie S KA 6 p v )  ‘Au* (4*19) 

When d = 0 the continuity equation (4.12) reduces to 

iB, aKp + Dp b, = 0, (4.20) 

which may be used to independently verify the values of a, and b, obtained from 

I n  order to  apply matrix-eigenvalue techniques we must cast (4.15)-(4.17) into the 
standard algebraic form 

Eijvj = flui (4.21) 

by truncating the expansions (4.1)-(4.4) a t  some finite wavenumbers A,,, and v,,,, 
and concatenating the Galerkin coefficients a,,, b,,, and cAv into a single variable w with 
a single running subscript i. Details of an efficient method for the calculation of the 
matrix elements Eij from the interaction matrices I$iv are given in Klaassen (1982). 
The simplest truncation scheme one may apply to  a two-dimensional Galerkin series is 
the so-called ‘rectangular’ truncation, where only those modes that satisfy Ihl < N, 
0 < v < N are retained. However, such a scheme is wasteful of resolution, 
because it retains small coefficients in the vicinity of A - N ,  v - N while neglecting 
much larger coefficients near A - 0, v - N and A - N, v - 0. Traditionally, this 
problem is avoided by adopting the ‘triangular’ scheme (Denny & Clever 1974; Clever 
& Busse 1974), which retains only those modes satisfying I A I + v < N. However, this 
truncation scheme is not particularly well suited for use with the Galerkin basis 
(4.6)-(4.7). The function eiAmaxa5 contains 2h,,, half-wavelengths in the horizontal 
domain L = 21t/d, whereas sin ( v , , ,m/H)  contains only v,,, half-wavelengths in 
the vertical domain H. Thus the truncation scheme I A 1 + v < N would not be opti- 
mal for a system where sufficient vertical resolution is crucial. $ It has been found in 
practice that the modified triangular truncation scheme 

21Al+v < N, N = odd integer, (4.22) 

2 If the instability is indeed confined to the vicinity of the superadiabatic regions, then the shape 
of tha t  region (figure 1) suggests tha t  vertical resolution should be more critical than horizontal 
resolution. 

(4.15)-(4.17). 
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provides superior convergence in the present application. The scheme (4.22) reduces 
the matrix E to one or order 

M = t ( 3 P  + 2N+ 3). (4.23) 

Since the matrix is complex, it requires 2M2 real floating-point words of storage. Thus 
the storage requirements are roughly proportional to 4.5N4, so that even modest 
truncation levels place enormous demands on storage. 

The algebraic eigensystem (4.21) was solved on the Cray l a  computer at the 
National Center for Atmospheric Research by using standard EISPACK subroutines 
(Smith et a2. 1974). The largest matrix that could be stored in memory was that 
corresponding to the truncation level N = 19, for which M = 562. This truncation 
level was found to be the minimum acceptable for the determination of the 
eigenvalues in the present application. The demonstration of acceptable convergence 
at  this maximum truncation level will be reported in what follows. The EISPACK 

routine CINVIT, which computes eigenvectors corresponding to selected eigenvalues 
by a method based on inverse iteration (see Smith et al. 1974), requires a work area 
equal in size to the original matrix. It therefore proved impossible to employ CINVIT 

for the recovery of eigenvectors beyond a truncation level of N = 15. A somewhat 
less general but more efficient routine based on a simple back-substitution technique 
was developed to retrieve eigenvectors for the truncation level N = 19. The details 
of this algorithm are given in Klaassen (1982). 

Once the KH wave state whose stability is to be tested has been chosen and the 
horizontal wavenumbers b and d and the truncation level N have been specified, the 
matrix E may be computed and the eigensystem (4.21) solved. In  order to ensure that 
the supposition (3.1 7 )  concerning the time dependence of the eigenfunctions is 
satisfied, we must discard modes with growth rates that are not large compared with 
the temporal variations in the two-dimensional KH flow. Since the KH wave is not 
steady, the growth rate obtained for a particular unstable mode will vary as the 
nonlinear KH wave evolves. Thus for a secondary instability to be realized, its growth 
rate must be maintained at an appreciable value for a length of time that is sufficient 
to permit the initial ‘infinitesimal ’ disturbance to achieve a ‘finite ’ amplitude. These 
criteria for the growth rates of physically realizable modes will be further refined 
in 95. 

Although we may restrict our search for physical modes to those few with the 
largest growth rates, we cannot rely on the growth rate alone as a criterion to 
distinguish spurious from physically meaningful modes. The surface g ( b ,  d )  associated 
with a physical class of modes should converge as the truncation level N is increased, 
and should also display some degree of continuity with respect to the evolution of 
the Kelvin-Helmholtz background. Eigenfunctions corresponding to physical modes 
should not exhibit excessive structure on the scale of resolution, and should show signs 
of convergence as the resolution is increased. We note that this constitutes a 
particularly stringent test because eigenfunctions generally converge more slowly 
than the corresponding eigenvalues. In order to firmly establish the physical basis 
of a mode, it should be possible to correlate various features of the eigenfunction with 
the specific KH field from which i t  was derived. 

5. Longitudinal modes of instability for the Kelvin-Helmholtz wave 
with Re = 500 

We restrict ourselves in the remainder of this paper to examining the stability of 
nonlinear KH waves against infinitesimal disturbances with longitudinal symmetry, 
i.e. those disturbances with b = 0. This decision is supported by the fact that the 
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fastest-growing unstable modes were consistently found to have their horizontal wave 
vector, defined by k = bZ+dy,  oriented in the spanwise (y) direction. Also, Davis & 
Peltier (1979) have argued that the superadiabatic regions developing in two- 
dimensional finite-amplitude Kelvin-Helmholtz waves should become unstable 
against convection rolls. In analogy with the Rayleigh-BBnard problem in the 
presence of shear (e.g. Kelly 1977), these rolls would be aligned longitudinally, i.e. 
with their long axis in the direction of the shear vector. If the preferred mode of 
instability were centrifugal, it would also tend to have its wavevector oriented in the 
spanwise direction (e.g. consider the Taylor problem for the flow between rotating 
cylinders). 

The Rayleigh numbers associated with the superadiabatic regions that develop in 
the KH wave with Re = 500, Pr = 1 and Ri,,, = 0.07 (see $2) indicate that these 
regions are quite likely to become gravitationally unstable. We therefore begin by 
examining in some detail the stability of this particular KH wave. The stability 
characteristics of KH flows with different initial Reynolds numbers will be dealt with 
in $6. It was shown in KP that the finite-amplitude KH wave oscillates about a state 
in which the net Reynolds stress vanishes and the major axis of the elliptical core 
of the billow is horizontal. Thus the KH wave state with vanishing net Reynolds 
stress, denoted by the key time (5;  (see figure 2 and table 2 of KP), is the closest 
approximation we have to a stationazy state. It would therefore seem appropriate 
to begin our examination of the stability of the nonlinear KH wave a t  this particular 
point in its evolution. 

The growth rates and corresponding angular frequencies of various unstable modes 
of the Re = 500 KH wave at the key time (5) in its energy cycle have been plotted 
in figure 3 as a function of the spanwise wavenumber d .  (The truncation level 
employed was the maximum, N = 19.) The various modes of instability displayed 
in figure 3 fall into several branches that are continuous in wavenumber space. Only 
those branches that have the largest growth rates and have been determined not to 
be spurious (according to the criteria outlined in $4) have been recorded in this figure. 
We recall from $3 that the structure of the stability equations forces the eigenvalues 
in this case (b = 0) to be either real or to occur in complex-conjugate pairs. The two 
modes corresponding to a complex-conjugate pair of eigenvalues are to be joint,ly 
interpreted as forming a stationary or standing wave that oscillates with a frequency 
given by w/27c. 

Associated with each of the branches of unstable modes in figure 6 (a) is an unique 
frequency that shows little variation with the wavenumber (figure 6b). We have 
grouped these branches into two distinct sequences; the reason for doing this 
will become apparent when we present the corresponding eigenfunctions. The 
first sequence has branches with frequencies wo x 0, w1 x k0.17, o2 x f0.33, 
w3 x k0.54 and w4 x k0.70 that occur in ratios of 

Iw0 I : I  w1 I : I o2 I : Iwg I : I wP I = 0: 1 : 1.9:3.2:4.1, 

while the second sequence has branches with frequencies wi x 0, w; x f0.26 and 
w; x f0.49 that occur in ratios of 

Iwi I : 1 w;  I : I w;: 1 = 0:  1 : 1.9. 

Thus the first sequence of branches (approximately) constitutes the first five 
harmonics of a Fourier spectrum with a fundamental frequency of Jwll x 0.17. 
Presumably the growth rates of the branches corresponding to higher harmonics in 
this series are too small to be revealed by the present method. Only the first three 
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FIGURE 3. (a) The growth rate uR and (6) angular frequency w as functions of the spanwise 
wavenumber d for various longitudinal (b  = 0) unstable modes of the Re = 500 KH wave at the 
key time (5) in its energy cycle. The sequence of modes labelled w,,, . . . , wq (solid lines) are associated 
with the primary SAR, while the ob, .. ., w; modes (dashed lines) are associated with the secondary 
SAR. The truncation level used was the maximum N = 19. 

Fourier harmonics are evident in the second sequence (that with fundamental 
frequency 1 w i  I x 0.26), because the growth rates corresponding to these branches are 
substantially smaller than those of the first sequence. 

In our presentations of contour maps of the eigenfunction correlations, we adhere 
to the convention of representing positive levels with solid lines and negative levels 
with dashed lines. Figure 4 contains plots of the perturbation vertical heat flux 

= Re cut* Ot} corresponding to the non-oscillatory and fundamental harmonics 
of the sequences with fundamental frequencies (wll = 0.17 and lwil = 0.26. In  order 
to compare eigenfunctions representative of the fastest-growing modes for each 
branch, we have fixed the wavenumber at d = 3.6 for the w1 sequence and d = 1.15 
for the w i  sequence. In  addition, the superadiabatic regions (SARs) of the Re = 500 
Kelvin-Helmholtz flow at the key point (5 )  have been superimposed on each 
representation of the heat flux. Since a positive vertical heat flux is indicative of 
convective activity, it  is apparent that the sequence of branches with fundamental 
frequency I w1 I = 0.17 correspond to convective activity in the primary (ring-shaped) 
SAR, while the sequence of branches with fundamental frequency I w i  I = 0.26 cor- 
respond to convective activity in the secondary (oval-shaped) SAR at the centre of 
the billow’s core. Similar correlations were found for the eigenfunctions correspond- 
ing to the higher harmonics I w I, I wg I, I wp I and I w; I. 

Plotsofthecorrelationsu,u, = t Re{uL* u t } a n d Q ’ - q  = 3(lull2-lu$I2}, which 
are responsible for the exchange of kinetic energy with the nonlinear KH wave 
(figure 5 ) ,  show that they are also confined to the superadiabatic region. Inspection 
of (3.29) shows that the contributions of these correlations to the disturbance 
kinetic-energy density is multiplied by the deformation fields of the KH wave. Since 
the deformation fields are predominantly confined to the braids of the nonlinear wave, 
which lay outside the SAR, the kinetic-energy conversion terms make negligible 
contributions to the disturbance energy, and will not be considered further in this 
analysis. The nature of these correlations clearly indicates that the instability we have 

9 

---I3 
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d = 3.6 

*o 

d =  1.1 
I 

FIGURE 4. Vertical heat-flux correlations mu for several longitudinal (b = 0 )  unstable modes of 
the Re = 500 KH wave at the key time (5).  The superadiabatic regions of the nonlinear wave (shaded 
area) have been superimposed on each frame. It can be seen that thew,, and w1 modes are associated 
with convective activity (positive heat flux) in the primary (ring-shaped) SAR, while the w6 and 
w; modes are associated with convective activity in the secondary (oval-shaped) SAR. Note that 
the spanwise wavenumber d was chosen to be near that of the fastest-growing mode for each branch 
(i.e. d = 3.6 for the w,, and w1 branches and d = 1.15 for the w; and w; branches). The box in the 
upper right corner, which has dimensions of L / ( N -  1) by H I N ,  shows the nodal spacing of the 
highest-order Galerkin functions exp (ih,,,as) and sin (v,,, x z / H ) .  

discovered is not centrifugal in origin. Furthermore, it bears no resemblance to the 
translative instability discovered by Pierrehumbert BE Widnall (1981 ) for the Stuart 
vortex in an unstratified free shear layer. 

It is interesting to compare the growth rate of the most-unstable convective mode 
(i.e. the wo mode with d z 3.6), given by nR = 0.213, with the growth rate up 
predicted by the simple parcel method of stability analysis. This method may be used 
to obtain a rough estimate of the rate at which a fluid parcel would be displaced from 
its initial level in an unstably stratified (but hydrostatic) environment, and gives 

Here we have multiplied by h/u,  to obtain a non-dimensional value. We may estimate 
8 - 8 and d8/dz - be*/&*, where AO* is the potential-temperature contrast across 
the centre of the superadiabatic layer of the KH wave and 6* is the depth of this 
layer. Since Ae* - 1.3AT and S* - O.66h for the primary SAR of the KH wave a t  
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I w1 

0 
I - 

0 

I (b) d=3.6 I(4 d = 3.6 - FIQURE 5. (a), (b)  Reynolds stress (-u,u, ) and (c), (d )  m-m" correlations for the oo and 
w1 modes displayed in figure 4. Note that these correlations are confined to the superadiabatic 
region. 

the key time (5 ) ,  we obtain a growth rate cP x 0.35. The close correspondence 
between this crude estimate up and the actual growth rate uR of the most-unstable 
mode revealed by our more rigorous stability analysis provides further support for 
our contention that the unstable modes we have discovered derive the major part 
of their energy from the unstable density stratification. 

All results of the stability analysis presented to this point have been calculated 
with the maximum obtainable value of the truncation level N = 19. In  order to obtain 
some idea of the accuracy of the eigenvalues and eigenfunctions at this level of 
truncation, we now turn our attention to  the question of convergence. Figure 6 
illustrates the dependence of the growth rates corresponding to w i  = 0, w,, = 0, 
w1 = f 0.17 and w2 = f 0.35 on the truncation level N. As a matter of interest, nearly 
60% more coefficients are retained in the Galerkin expansion at N = 19 than that 
at N = 15, while nearly 80 % more coefficients are retained at  N = 15 than at N = 11. 
Note that, in the sequence of branches with fundamental frequency I w1 I = 0.17, there 
is a general trend for the wavenumber of the fastest-growing mode of a particular 
branch to increase aa the truncation level increases. Convergence at long wavelengths 
is acceptable for all modes. While convergence near the wavenumber of maximum 
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FIGURE 6. Convergence of the growth rates crR for the unstable longitudinal modes (a) w6, ( b )  wo, 
(c) w1 and (d) w2 of the Re = 500 KH wave at the key time (5). The numbers labelling each curve 
refer to the truncation level N ,  where 21 A I + v < N .  

growth is excellent for the non-oscillatory modes, it is not quite as good for the 
oscillatory modes. We have not attempted to demonstrate the convergence of the 
branches corresponding to the frequencies w3, wp,  w, and wi because the growth rates 
of these modes are generally too small to permit their accurate identification below 
truncation levels of about N = 15. Instead, as an indication of which modes are 
identifiable at  the various truncation levels, we have recorded in table 1 the value 
of the frequency corresponding to each of the oscillatory branches as a function of 
the truncation level N. 

Since small errors in an eigenvalue can often lead to large errors in the corresponding 
eigenfunction, eigenvalues generally converge more quickly than eigenvectors. Thus 
an examination of the variation of the eigenfunctions with the truncation level is a 
very stringent test of convergence. Figure 7 illustrates the convergence of the 
eigenfunctions corresponding to the frequencies w,, and Iwl I at d = 3.6, which is close 
to the wavenumber of the fastest-growing mode. The vertical heat-flux correlations 
for N = 11 and N = 15 in figure 7 are to be com?ared with the corresponding 
representations of the eigenfunctions at N = 19 displayed previously in figure 4. The 
w1 mode shown in figure 6 ( c )  shows little change when the truncation level is increased 
from N = 11 to N = 15 and a much larger change from N = 15 to N = 19. Since the 
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N =  11 N =  1 5  

FIGURE 7. Convergence of the vertical heat-dux correlations (w’) for the unstable longitudinal 
o,, and o1 modes of the Re = 500 KH wave at the key time (5). The results shown here at the 
truncation levels N = 11 and 15 for a spanwise wavenumber d = 3.6 should be compared with those 
for N = 19 shown in figure 4. The box in the upper-right corner of each frame shows the nodal 
spacing of the highest-order Galerkin basis functions corresponding to A,, = f ( N -  1) and 
vmax = N .  

eigenfunctions for this mode are well resolved at N = 19, the eigenvalues at N = 19 
are probably not as inaccurate as figure 6(c)  would suggest. The occasional lack of 
monotonicity in the convergence of Galerkin methods is well known. 

These comparisons indicate that the truncation level N = 19 is the minimum 
required to ensure an adequate representation of the eigenfunctions and eigenvalues. 
Although it might be desirable to have results at a slightly higher truncation level 
than N = 19, we note that the eigenvalues and eigenfunctions are also limited in 
accuracy by the fact that the KH wave whose stability is being tested is not in a 
steady state. We shall demonstrate shortly that the eigenvalues and eigenfunctions 
vary considerably as the background KH wave evolves. Thus the infinitesimal 
disturbances do not strictly exhibit the exponential time dependence assumed in the 
derivation of (3.18)-(3.23). The important point is that the results obtained at 
truncation level N = 19 are sufficient for the purposes at hand, namely to demonstrate 
that secondary instabilities do exist and to determine the dynamicel origins of these 
instabilities. 

In  the derivation of the stability equations (3.18)-(3.23) we assumed, without a 
prwri justification, that the secondary instabilities would have growth rates much 
larger than any corresponding measure of the temporal variations in the background 
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KH flow. We may take as an appropriate measure of the fluctuations in the KH fields 
the 'growth rate' based on the KH wave kinetic energy K ,  namely 

Thus an eigenvalue and its corresponding eigenvector are a valid respresentation of 
one of the genuine unstable modes of the KH flow only if 

VR B uKH. (5.3) 

Since the KH wave never achieves a steady state, the growth rate, frequency and 
eigenfunction computed for a particular mode must vary as the KH wave evolves. 
Thus the comparison between the growth rates of the unstable modes and the KH 
wave should be made at each point in the evolution of the KH wave. 

We have recorded in figure 8 the temporal variations of the growth rates uR for 
each of the modes identified previously as wo, wl, w2, w3 and w4, together with the 
instantaneous growth rate uKH of the KH wave. The wavenumber for the secondary 
unstable modes was fixed at d = 3.6 because this value is very near the wavenumber 
corresponding to maximum growth for each of these branches. The sequence of modes 
with fundamental frequency ui = kO.26 has not been included in figure 8 because 
the fastest-growing modes in this sequence have wavenumbers significantly smaller 
thand = 3.6. Note that, although the growth rates shown in figure 8 vary considerably 
as the nonlinear KH wave evolves, the frequencies of the oscillatory modes do not 
(Klaassen 1982). 

Within the accuracy of our analysis, the first appearance of the secondary 
instability coincides with the emergence of the superadiabatic region in the background 
KH flow, i.e. shortly before the key time labelled (2*). The KH wave is still growing 
rapidly at this time, so the growth rates of the unstable modes are not large compared 
to that of the nonlinear KH wave. Since the criterion (5.3) is not well satisfied, the 
nature of the early stages of these secondary modes (and in particular the precise 
moment at  which the KH flow first becomes unstable) cannot be accurately 
determined by the current method. As the evolution of the KH wave proceeds beyond 
the key time (2*), however, the growth rates of the unstable modes wo, wl, w2 and 
w3 increase rapidly, while the growth rate of the nonlinear KH wave diminishes. By 
the time the secondary modes achieve their maximum growth rate, the KH wave 
has achieved its maximum wave kinetic energy (key time (4)), and has begun the slow 
amplitude oscillations characteristic of the energy cycle. At  this time, the criterion 
(5.3) is easily satisfied. It should be noted, however, that the growth rates of the 
unstable modes decrease sharply after the maximum value is attained, and apparently 
vanish altogether before the second occurrence of zero net KH-wave Reynolds stress 
at the key time (7). 

Further insight into the behaviour of these unstable modes may be gained by 
examining the variation of the eigenfunctions as the background KH flow evolves. 
Figure 9 shows contour plots of the vertical heat-flux correlations for the unstable 
modes wo, w1 and w2 with wavenumber d = 3.6 at the key points (2*), (3), (4) and 
(5) in the energy cycle of the nonlinear KH wave. One can see from this figure that 
the wo, w1 and w2 modes correspond to convective activity that is strongly correlated 
with the evolving primary superadiabatic region of the nonlinear KH wave. Even 
at the key time (2*), when the current method of analysis is questionable owing to 
the violation of (5.3), the eigenfunctions reveal a small region of convective activity 
coincident with the emerging oval-shaped primary superadiabatic region. As the 
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FIGURE 8. Time dependence of the non-dimensional growth rates gR of the non-oscillatory (a) and 
oscillatory ( b )  longitudinal modes of the Re = 500 KH wave (with spanwise wavenumber d = 3.6 
and truncation level N = 19). Note that the time axis is in units of seconds. The instantaneous 
growth rate uKH of the KH wave provides an indication of the magnitude of temporal variations 
in the nonlinear wave. The vertical dashed lines indicate the key times in the energy cycle of the 
KH wave. Key for the oscillatory modes : -, w1 ; . . * * , w2 ; - - - -, w8 ; - .-, up. 

KH wave grows in amplitude, the primary superadiabatic region expands, developing 
into a ring-shaped area by the time the KH wave achieves its maximum net Reynolds 
stress (key point (3)). At this time the heat flux of the unstable modes has taken on 
the same ring-like shape. As the KH wave evolves through the key points (4) and 
(5) the primary superadiabatic ring and the coincident ring of convective activity 
spread outward. 

The eigenfunctions at the key time (6) in the KH wave energy cycle have not been 
included in this sequence because they are not well resolved. It can be seen from 
figure 1 that the outer superadiabatic ring at  the key time (6) is much narrower than 
that at (4) or (5 ) ,  and is apparently at the limits of resolution imposed by the 
maximum truncation level N = 19. By the time the KH wave has reached the key 
time (7),  the outer superadiabatic region has become extremely narrow, and is on the 
verge of disappearing altogether. 

It is evident from the preceding discuspion that the growth of infinitesimal 
disturbances is strongly modified by the evolving nonlinear KH wave and, contrary 
to the assumption (3.17), is not purely exponential. Although the criterion that uR 
be much larger than uKH is a necessary condition for a physically meaningful mode, 
it is therefore not a sufficient one. Unless the growth rate of a particular mode is 
sustained for a sufficient length of time during the evolution of the nonlinear KH 
wave, a small initial disturbance will not be able to grow to finite amplitude. We must 
therefore develop some means of assessing the potential for the growth of an 
'infinitesimal' disturbance based on the temporal variation of its growth rate. If a 
growth rate uR is maintained for a short period of time denoted by At, the disturbance 
would be amplified by a factor equal to e'RAt. If uR is a continuous function of time 
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t over the interval 0 < t < T then the total amplification A of the disturbance may 
be approximated by dividing the interval T into N equal portions of length At = TIN 
and taking the product of the amplification factors from each subinterval At, i.e. 

N 
A x n e‘RmAt = exp ( gRmAt)  x eBRT, (5-4) 

(5.5) 

m-1, N m-1 

- l N  

N m-1 
where g R X -  GRm. 

Taking the limit as N +  a0 or At+O, 

By putting 

N 

N-rCC 
I f T  

we see that the aniplification factor 
A = eaRT (5-8) 

over the time interval T is related to the area under the curve of gR versus t .  
Using the data in figure 8, we have computed the amplification factors eaBT for 

each of the modes w,, wl, w2, w3 and up, and compiled the results in table 2. For 
purposes of comparison, we have also calculated the amplification factor for the 
primary KH instability based on the value of rKH calculated from the data in KP. 
It should be emphasized that the amplification factors computed here are intended 
only as crude measures of the potential a particular mode has to achieve finite 
amplitude. We have not included the uncertain growth rates near the key point (2*) 
(where the requirement (5.3) breaks down) in the computation of these factors, and 
the accuracy of the growth rates near and beyond the key point (6) is questionable. 
Furthermore, the true time dependence of unstable modes evolving in a KH wave 
is not likely to be given by the function eut, where ~7 is the time-varying eigenvalue 
computed by our approximate method of stability analysis. In  fact the actual 
amplification experienced by the Re = 500 KH billow is equal to 9700 (based on the 
increase in the square root of the wave kinetic enegy in the linear regime) rather than 
the value 7 1 2 0  predicted in table 2.  Taking all these caveats into consideration, it 
still seems likely that the non-oscillatory mode w,, which according to table 2 has 
an amplification factor nearly seven times that of its nearest competitor wl, will be 
the dominant unstable mode. However, the amplification factor of the w1 mode is 
large enough that we cannot exclude the possibility of its being simultaneously 
amplified. We should also point out that the w1 mode displayed a lesser degree of 
convergence than the w,, mode, indicating a greater degree of uncertainty in the w1 
mode’s amplification factor. Because the spatial structure of the wo and o1 modes is 
very similar, there is also a distinct possibility that, once ‘finite’ amplitude has been 
attained, nonlinear interactions could enhance the growth of the w1 mode. While the 
fate of the w2 mode is similarly uncertain, it seems unlikely that the w3 or w4 modes 
will ever achieve finite amplitude of their own accord. 

We turn our attention to the question of the effect that the evolving nonlinear KH 
wave has on the various unstable branches in wavenumber space. Figure 1 0  illustrates 
the wavenumber dependence of the branches corresponding to wo, o1 and w, at the 
key points (3), (4), (5) and (6) in the energy cycle of the KH wave. Note that, for each 
of these branches, all but the longest-wavelength modes achieve their maximum 
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Truncation 
N 

Angular frequency 
level : 

1011 lwzl l " Q l  1 0 4 1  14 141 
- - - - 7 0.13 0.28 

11 0.12 0.35 - - 0.22 - 
15 0.13 0.35 0.48 0.61 0.24 - 
19 0.17 0.33 0.54 0.70 0.26 0.49 

TABLE 1.  Angular frequency of the various longitudinal modes of instability aa a function of the 
truncation level. The dashes indicate that a particular mode was not identifiable at the truncation 
level in question. 

Mode "0 "1 " 2  "S "4 KH 
Initial time ti (s) 574.5 574.5 574.5 547.5 643.1 17.15 

Final time tf (s) 797.5 763.2 763.2 728.9 746.0 651.70 

T = uo/h(tf- t i )  44.1 37.3 37.3 30.5 20.3 125.70 

UR 0.174 0.154 0.136 0.121 0.104 0.071 

VBT 7.69 5.75 5.08 3.68 2.12 8.87 

e 5 T  2190 314 160 40 8 7120 

TABLE 2. Amplification factors eGT for the modes in the sequence with fundamental frequency 
(wll x 0.17 at the wavenumber d = 3.6. The integrations required for R T  were performed over 
a time interval extending from just before the key point (3) to just beyond the key point (6), i.e. 
from ti = 574.5 8 to t, = 797.5,s. If uR vanished on this interval the shorter interval indicated in 
the table waa used. Note that the unit of nondimensional time is h/uo = 5.054 s. 

- 

- 

growth near the key point (5). Also note that all growth rates belonging to a particular 
branch, with the exception of those at the longest wavelengths, rise uniformly before 
the maximum a t  the key time ( 5 )  and decline uniformly thereafter. This figure also 
shows that the wavenumber of the fastest-growing mode of a particular branch 
increases significantly with time before the key time ( 5 )  and then decreases only 
slightly thereafter. In table 3 we have compiled the wavenumbersofthefastest-growing 
modes for each of the branches oo, o1 and w2 at the key times (3), (4), ( 5 )  and (6). 

We have thus far neglected the effect of the evolving nonlinear KH wave on the 
sequence of unstable modes that were found to be associated with the secondary 
(inner, oval-shaped) superadiabatic region at  the key time (6), i.e. the sequence of 
modes with fundamental frequency Iwi I = 0.26. Heat-flux correlations (not shown 
here) indicate that this association persists as the KH wave evolves and the secondary 
SAR expands outward into a ring-shaped region. Figure 11 depicts the shape of the 
wi and wi branches in wavenumber space at the key points (5),  (6) and (7). These 
modes clearly never achieve the large growth rates typical of the sequence of modes 
with fundamental frequency lwll = 0.17. Amplification factors for the wi sequence 
never exceed values of e*R - 60, indicating that such disturbances do not have much 
intrinsic potential for achieving finite amplitude. This is consistent with the analysis 
described in $2, which showed that the Rayleigh number associated with the 
secondary SAR is generally lower than the corresponding Rayleigh number of the 
primary SAR. It appears that the unstable modes associated with the emergence of 
the first SAR will reach finite amplitude and significantly alter the nonlinear 
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0.3 (a) I 

0 L 
0 2 4 6 0 2 4 6 

y-wavenumber d y-wavenumber d 

0.2 ' b" 
Y e 
9 

0 0.1 ' 
8 

0 2 4 6 

y-wavenumber d 

FIQURE 10. Growth rate a, of the oo (a), w1 (b) and w2 (c) longitudinal modes as a function of the 
spanwiae wavenumber d for the Re = 500 KH wave at the key times (3), .. ., (6) in its energy cycle. 
(Curves are labelled according to the key time.) 

(4 
Key time "0 "1 "a w; 4 

- - 2.3 2.4 2.9 
3.2 3.4 3.5 
3.6 3.6 3.8 1 .o 1.3 
3.4 3.4 3.3 1.4 2.0 
- - - 1.8 1.3 

- - (3) 
(4) 
(5) 
(6) 
(7) 

( b )  
Key time "0 W1 "2 4 4 

- - 0.147 0.145 0.122 
0.204 0.197 0.156 

0.202 0.181 0.098 0.109 0.213 
0.169 0.072 0.083 0.105 0.105 
- - - 0.101 0.103 

- - 
(3) 
(4) 
(5) 
(6) 
(7) 

TABLE 3. (a) Wavenumbers d of the faatest-growing modes with frequencies wo, wl, war w; and w i  
at the key times (3), (4), (5),  (6) and (7) in the KH wave energy cycle. (b) Growth rates uR of the 
same fastest-growing modes. 
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FIGURE 11. Growth rate us of the OJ; (a) and w; ( b )  longitudinal modes as a function of the spanwise 
wavenumber d for the Re = 500 KH wave at the key times (5), ..., (7) in its energy cycle. (Curves 
are labelled according to the key time.) 

evolution of the wave before the modes associated with the secondary SAR have an 
opportunity to achieve any significant growth. In  the remainder of this paper we 
therefore consider only those unstable modes associated with the primary SAR. 

6. The Reynolds-number dependence of secondary instabilities with 
longitudinal symmetry 

We begin with a comparison of the unstable modes of the Kelvin-Helmholtz waves 
at  Re = 300 and Re = 900. A prior search of wavenumber space has revealed that 
the most-unstable modes of the Re = 300 KH wave occur at  wavenumbers near 
d = 1.7, while those for the Re = 900 KH wave occur near d = 4.7. We therefore use 
these fixed wavenumbers for the purpose of displaying in figure 12 the temporal 
evolution of the growth rate gR for each of the wo, w1 and w2 modes of the Re = 300 
and Re = 900 KH waves. We have also included in this figure the growth rates gKH 
of the corresponding nonlinear KH waves. The maximum growth rates of the wo, w1 
and w2 modes at  Re = 900 are much larger than those of the corresponding modes 
at either Re = 300 or Re = 500 (figure 8), and easily satisfy the criterion vR P gKH. 

Note that, while the Re = 900 and Re = 500 KH waves are most unstable between 
the key times (4) and (5 ) ,  the Re = 300 wave is most unstable between the key times 
(3) and (4). In fact, by the time the key point (5a )  (zero KH wave Reynolds stress) 
is attained by the Re = 300 billow, the unstable modes have been considerably 
damped. This marked difference in behaviour, which can be attributed to the 
increased importance of thermal and viscous diffusion at  low Reynolds numbers, 
forces us to introduce the key points (2*) and (3*) at t = 651.70 and 754.60 s 
respectively in the evolution of the Re = 300 KH wave. The maximum growth rates 
of the wo, w1 and wz modes at Re = 300, which occur near the key time (3*), are 
considerably smaller than those of the corresponding modes a t  either Re = 500 or 
Re = 900. In fact these maximum growth rates are only about four times larger than 
the growth rate gKH of the Re = 300 KH wave at (3*), causing some degree of 
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0 200 400 600 800 lo00 0 200 400 600 falo lo00 
Time (s) T i e  (s) 

FIQURE 12. Time dependence of the non-dimensional growth rates up of the unstable w,, (-), 
o1 ( - - - - )  m d  w, (-.-) longitudinal modes of the Re = 300 (a) and Re = 900 (b )  KH waves. The 
instantaneous growth rates uKH of the KH waves provide an indication of the magnitude of the 
temporal variations in the nonlinear waves. The vertical dashed lines indicate the key times in the 
energy cycles of the KH waves. Note that the spanwise wavenumber WM fixed at d = 1.7 in the 
case of Re = 300 and at d = 4.7 for the Re = 900 wave. The wg and wp modes were excluded for the 
sake of clarity. 

uncertainty in their accuracy. However, the important fact is that the growth rates 
of the unstable modes display the general trend of decreasing sharply as the Reynolds 
number is decreased. This behaviour suggests the existence of a critical Reynolds 
number, below which the two-dimensional KH billow is stable. The problem of 
estimating this critical value of the Reynolds number will be considered later in this 
section. 

Figure 13 shows the wavenumber structure of the branches wo, . . . , w4 at a time when 
each of these modes is near maximum growth (i.e. at the key point ( 3 9  in the case 
of Re = 300 and at the key point (5) in the case of Re = 900). Apparently the growth 
rates of the w4 mode at Re = 300 are too small to be revealed by the current method. 
In figure 14 we compare the evolution of the heat-flux correlations for the wo modes 
of the Re = 300 and 900 KH waves. The disturbance heat flux is, as it was for the 
Re = 500 wave, everywhere positive and remains well correlated with the expanding 
primary SARs of both KH waves. 

We have also analysed the stability of the KH waves generated by our nonlinear 
numerical model at Re = 400 and Re = 700. The most-unstable modes at Re = 400 
were found to occur near the key time (4), while those at Re = 700 occurred near the 
key time (5). In an attempt to obtain some information about the inviscid limit, we 
removed all of the diffusive terms from the stability equations (3.18)-(3.23) and used 
the Re = 900 KH wave state at the key point (5) as an approximation to the 
most-unstable inviscid K H  wave state. The most-unstable branches corresponding 
to the modes wo, w1 and w2 have been compiled in figure 15 for various KH waves 
with Reynolds numbers in the range 300 < Re < 900. It is important to note that, 
for each of these simulations, the growth of the primary KH wave was induced in 
precisely the same way, i.e. according to scheme A of KP. Thus the simulations may 
be compared without considering the sensitivity of KH wave character to the 
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amplitude and structure of the disturbance that induces wave growth. This sensitivity 
will be discussed in more detail later in this section. 

We have superimposed on figure 15 the growth rate of the invisid primary 
Kelvin-Helmholtz instability as a function of the wavenumber. (Note that the wave 
vector of the primary KH instability is orthogonal to the wave vector of the 
secondary mode of instability.) The fastest-growing secondary modes have wave- 
lengths that are considerably shorter than the fastest-growing modes of the primary 
KH instability. For example the fastest-growing w,, mode at Re = 500 (key point ( 5 ) )  
has wavenumber d = 3.6, which corresponds to a wavelength D = 2 x / d  = 0.87, while 
the KH wavelength is given by L x 16 (both in units of h) .  The aspect ratio of 
the convection 'rolls' is given by 

where S = 0.65h is the depth of the corresponding superadiabatic region at  x = $L. 
A factor of two has been included because each wavelength in the y direction contains 
two convective cells. The cross-sections of the convection 'rolls ' are therefore slightly 
elliptical, with their major axis in the vertical direction. It is clear that the spanwise 
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Re = 900 

(3) 

FIGURE 14. Evolution of the vertical heat-flux correlations (G’) for the longitudinal w,, modes 
of the Re = 300 and 900 KH waves. The spanwise wavenumber d = 1.7 for Re = 300, while d = 4.7 
for Re = 900. The key times are indicated in the lower-right corner of each frame. Note the 
correlation of the convective activity (positive heat flux) with the primary portion of the (shaded) 
SAR. 

scale of the most-unstable secondary modes is determined by the depth of the 
superadiabatic region. 

Figure 15 also shows a marked disparity in bandwidth between the primary KH 
and secondary unstable modes. As a consequence of the narrow bandwidth of the 
primary K H  instability, the subharmonics and higher harmonics of the fastest-growing 
KH mode do not interact strongly with the mean flow, and can only be significantly 
amplified after the fundamental mode has reached finite amplitude. This results in 
a nonlinear wave whose spectrum is dominated by the fundamental harmonic, at least 
until subharmonic instabilities set in. (The process of vortex pairing associated with 
subharmonic amplification will be described elsewhere.) On the other hand, the 
extremely broad bandwidth of the secondary instabilities could permit both sub- 
harmonics and higher harmonics of the fastest-growing mode to be significantly 
amplified at the same time m the fundamental mode. For example the fastest-growing 
mode on the oo branch at Re = 700 occurs at the wavenumber d x 4.1, and the growth 
rates of the first subharmonic and second harmonic of this mode are only reduced 
by about 15 % from maximum value. Furthermore, the fastest-growing modes of the 
w1 and w2 branches at Re = 700 also have growth rates that are not more than 15 yo 
lower than that of the fastest-growing wo mode. If such a variety of modes with 
differing spatial structure and temporal behaviour were simultaneously amplified, the 
disorder of the flow would certainly be increased. A t  the present time we may only 
conjecture as to how this disorder would be manifested. It is possible that the disorder 
could simply appear as spatial or temporal inhomogeneities in a laminar pattern of 

2-2 
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FIGURE 15. A comparison of the fastest-growing w,, (a), w1 (b) and wz (c )  branches for KH waves 
with various Reynolds numbers (see labels on each curve). The Re = 300 and 400 branches are shown 
at the key times (3*) and (4) respectively, while for all other Re the branches are shown at the key 
time (5). The broad bandwidth of these secondary longitudinal modes may be contrasted with the 
extremely narrow bandwidth of the inviscid primary KH mode (dashed curve). Note that the KH 
mode is transverse. 

convection rolls. However, it is equally likely that nonlinear interactions between the 
amplified modes could lead to the onset of turbulence. 

Another interesting feature of figure 15 is that the bandwidth of each of the 
unstable modes w,,, w1 and w2 increases as the Reynolds number increases. In fact, 
the bandwidth for our approximation to the inviscid case appears to be infinite. This 
feature, in which the most-unstable modes in the absence of thermal and viscous 
diffusion are those with the shortest wavelength, is a common property of convective 
instabilities. The growth rates of instabilities having dynamical origins (such as the 
primary KH instability) tend to be limited at  small wavelengths by dynamical rather 
than diffusive processes, so that their bandwidth is restricted even in the inviscid 
limit . 

We have calculated the growth rate, wavenumber and frequency of the fastest- 
growing mode for each of the branches displayed in figure 15 and plotted them as 
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FIQTJRE 16. (a) Growth rate crB, (b)  wavenumber d ,  and (c) frequency o of the fastest-growing 
longitudinal w,,, w1 and w4 modes as functions of the Reynolds number. Note the sharp onset of 
all three modes of instability in the neighbourhood of Re % 220. The dotted, dashed and solid curves 
represent data obtained from KH waves initialized according to scheme A. The data obtained from 
the Re = 300 scheme-B simulation has been labelled with a B. 

a function of the Reynolds number in figure 16(a). Again we remind the reader that 
this comparison is valid only because each KH wave simulation was initialized in 
precisely the same way. If we bear in mind that the accuracy of the growth rates 
at Re = 300 is somewhat uncertain, we may extrapolate the curves of rE versus Re 
in figure l6(a) to locate the critical Reynolds number Re, for the transition of 
two-dimensional KH waves to a fully three-dimensional flow. This procedure yields 
a value of Re, x 220 f 50 for each of the three modes wo, w1 and 0,. The shapes of 
the rR versus Re curves also suggest that the growth rates are approaching a limiting 
value as Re+ 00. This provides an ad hm justification for the approximations made 
in obtaining the inviscid growth rates presented in figure 15. Also note that the 
dominance of the wo mode over the w1 and w, modes increases with increasing 
Reynolds number in the interval 400 < Re < 900, while the growth rates of the latter 
two modes converge as the Reynolds number increases in the same interval. 

The values of the critical Reynolds number obtained from the rB versus Re curves 
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may be corroborated with the aid of the corresponding d versus Re curves in 
figure 16(b). The graph shows that the wavenumbers of the fastest-growing wo, w1 
and w2 modes all decrease sharply as the Reynolds number decreases. Assuming the 
neutrally stable modes to have infinite wavelengths, we find by extrapolation that 
the critical Reynolds number is again near Re, x 220 f 50. This value for the critical 
Reynolds number is consistent with our earlier prediction (based on the Rayleigh 
numbers computed in $2) that the nonlinear Kelvin-Helmholtz billow should be 
marginally unstable at Re = 300. The reader should also note the striking resemblance 
between figures 2 and 16(a), which suggests that the Rayleigh number Ra* provides 
a good measure of the stability of the KH wave. 

In  contrast with the behaviour of bR and d, the frequencies w of the fastest-growing 
modes in figure 16 (c) show remarkably little variation with the Reynolds number. 
Considering the vastly different character of the KH waves at Re = 300 and Re = 900, 
this result is somewhat unexpected. The mean value for the angular frequency of the 
w1 mode is about 0.16 in non-dimensional units, while that for the o2 mode is about 
0.34. These two angular frequencies correspond to periods x 200 s and 
T, x 94 s respectively for the choice of scales employed in KP. The period of the 
energy cycle of the nonlinear KH wave, T - 290 s, was found in KP to correspond 
to the orbital period of a fluid particle about the central vortex. However, it  is clear 
that the fundamental period cannot correspond to an orbital period of a fluid 
particle about, for example, a convection roll. First we have a Fourier spectrum of 
modes to explain, and secondly the amplitude of the disturbance is arbitrary. 

The shape of the loci of gR verses Re in figure 16(a) implies that there is a sharp 
demarcation between KH waves that are unstable and those that are not. However, 
this is somewhat misleading. According to the results obtained in KP, the critical 
Reynolds number we have obtained (Re, x 220) is in the regime where the nonlinear 
characteristics of KH waves are very sensitive to the amplitude and structure of the 
disturbance that induces wave growth. This sensitivity arises from the diffusion of 
the mean flow which occurs prior to the onset of nonlinear wave-mean-flow 
interactions. Thus the loci of gR versus Re and the critical Reynolds number shown 
in figure 16(a) apply only to KH waves that are initialized according to scheme A 
of KP. We tested the sensitivity of KH waves with Re = 300 to the nature of their 
initialization by performing an additional simulation (see KP) in which wave growth 
was induced by a more energetic disturbance that more closely approximated an 
unstable eigenmode of the parallel flow. This scheme-B initialization produced a KH 
wave with a significantly larger maximum amplitude than the scheme-A 
Re = 300 KH wave. Furthermore, the dynamical features of the scheme-B 
Re = 300 KH wave more closely resembled those of the Re = 500 KH wave initialized 
by scheme A. 

We have tested the stability of the scheme-B Re = 300 KH wave against infini- 
tesimal disturbances with longitudinal symmetry, and have found that the growth 
rates of the unstable wo, w1 and w2 modes are significantly larger than the correspond- 
ing unstable modes of the scheme-A Re = 300 KH wave. The most-unstable modes of 
the scheme-B Re = 300 KH wave were found at  the key time ( 5 )  (zero net KH wave 
Reynolds stress), and their growth rates, wavenumbers and angular frequencies have 
been recorded in figure 16. If we were to compute and test the stability of a sequence 
of scheme-B KH waves with various Reynolds numbers, we would find that the cR 
versus Re curves would be raised slightly a t  large Re, and the critical Reynolds number 
would be shifted to a lower value. Although a sharp demarcation between stable and 
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unstable KH waves exists for a given initialization, the critical Reynolds number also 
depends on the amplitude and structure of the disturbance that induces wave growth. 
Thus the concept of a critical Reynolds number is ambiguous for this flow. 

7. Conclusions 
We have tested two-dimensional fmite-amplitude KH waves for stability against 

three-dimensional infinitesimal disturbances, and have found that they are most 
unstable against longitudinal modes which correspond to convective activity in the 
statically unstable regions induced by the roll-up of the nonlinear wave. Estimates 
of the amplification factors for these longitudinal modes have shown that for high 
Reynolds numbers the growth rates are maintained a t  large values for periods of time 
that should be sufficient to allow the disturbances to achieve large amplitude. 

We have shown that the critical Reynolds number for this transition, Re,, lies in 
the regime in which the nonlinear KH wave characteristics and thus Re, itself are 
sensitive to the amplitude and structure of the disturbance which induces KH wave 
growth. This result is consistent with observations by Woods (1969), who reported 
a value of Re, - 100 (in our choice of scales) for the onset of turbulence in KH waves 
developing in the oceanic thermocline. We should note that the observations are for 
Pr - 10 and that Woods failed to specify values of the initial minimum Richardson 
number. Further support is provided by the experiments of Koop & Browand (1979), 
who have observed the onset of turbulence in a KH wave developing in a saline flow 
for which Re = 75, Ri = 0.075 and Pr % 700. 

Thorpe (1973) has identified the transition to turbulence in his tilted-tube 
experiments with the onset of fully three-dimensional small-scale motions in the core 
of the two-dimensional Kelvin-Helmholtz billow. The turbulent motions gradually 
spread throughout the shear layer, resulting in the billow’s collapse. These observations 
are consistent with the localized origin and intrinsic three-dimensionality of the 
unstable longitudinal modes that our theoretical analysis has revealed. We have 
shown that these modes are confined to the statically unstable regions in the KH 
wave’s core as long as their amplitude remains small. Thorpe also observed that the 
first appearance of the small-scale structure closely coincides with the time that the 
billows achieve their maximum amplitude. This is also consistent with our findings 
which indicate that, while the longitudinal modes achieve their largest growth rates 
shortly after the billow attains its maximum amplitude, the growth of these 
instabilities is initiated earlier in the KH wave’s evolution. However, we should note 
that Thorpe was unable to establish whether or not the onset of turbulent motions 
had a limiting effect on billow growth. Finally, the preferred lengthscales of the 
instability are consistent with the scale of the turbulence observed in Thorpe’s 
experiments. Although Thorpe did not ascertain the physical origin of the secondary 
instability observed in his experiments on KH waves, there is little doubt that this 
instability arises from the buoyancy-driven longitudinal modes revealed by our 
theoretical analysis. For the region of parameter space investigated, we have found 
no evidence for a centrifugal instability of the recirculating fluid in the core of the 
billow. The possibility that secondary KH waves may form on the braids of the 
primary wave will be examined in a future publication. Within the region of 
parameter space considered here, however, such disturbances are at most of minor 
importance. 

It is interesting that the longitudinal modes of instability appear to form a discrete 
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spectrum of oscillatory modes corresponding to the angular frequenciesw = 0, wl, 2wl, 
3w1 and 4wl, with growth rates that generally decrease with increasing frequency. 
The fundamental frequency of this spectrum, wl, is incommensurate with the 
characteristic frequency associated with the energy cycle in the nonlinear KH wave. 
Since the growth rate of the fastest-growing mode w = 0 is not substantially larger 
than that of the mode with w = wl, one might be tempted to interpret the instability 
as a transition to a quasiperiodic flow with only two incommensurate frequencies. 
This would suggest the picture of the turbulence transition outlined by Ruelle & 
Takens (1971). However, we must emphasize that this idea is highly conjectural. A t  
the present time we do not know if the fastest-growing mode (w = 0) will dominate 
the finite-amplitude disturbance, or whether modes with slightly smaller growth rates 
(e.g. w = wl) may also contribute. 

Since the observations of Thorpe and others show no intervening bifurcations 
between the formation of KH waves and the onset of small-scale turbulent motions, 
one is inclined to directly identify the secondary instability we have discovered with 
the transition to turbulence. Certainly this instability has, at sufficiently high 
Reynolds numbers, many of the characteristics one might expect of a turbulence 
transition. For example, the preferred lengthscales of the unstable modes are small 
compared with the dominant spatial scales of the nonlinear wave. Furthermore, there 
exist several unstable modes having distinct frequencies and nearly equal growth 
rates. The bandwidth of each of these modes is also extremely broad, which indicates 
that there is no clearly preferred spatial scale. The simultaneous amplification of 
several modes with distinct spatial and temporal characteristics would lead to 
complicated and possibly turbulent motions. 

However, we must exercise caution here. Although it is clear from the close 
correspondence with the observations that the instability we have discovered is 
intimately related to the transition to turbulence in Kelvin-Helmholtz waves, the 
precise manner in which this transition proceeds remains obscure. A linear analysis 
such as the one employed in this study provides growth rates for infinitesimal 
non-interacting modes only. Turbulence, on the other hand, is a highly nonlinear 
phenomenon for which modal interactions are of crucial importance. Either inter- 
actions between disturbances with different temporal characteristics (i.e. modes 
from different branches in the spectrum) or interactions between disturbances with 
different spatial characteristics (i.e. modes from a particular broadband branch in the 
spectrum), or a combination of both types of interactions could lead to the observed 
chaotic motions. We also cannot exclude the possibility that the unstable longitudinal 
disturbances may develop into a row of laminar convection rolls with their axes 
parallel to the mean shear. After achieving some critical amplitude, these rolls could 
themselves be subject to a further instability, turbulent or otherwise. 

At the present time we have no means of determining which of these possibilities 
is correct. We intend to address this question in the near future by performing 
three-dimensional fully nonlinear simulations of the evolution of Kelvin-Helmholtz 
waves. We expect that the results of the present study will provide invaluable 
guidance in the execution and interpretation of these future analyses. 
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